Peroxynitrite mediated linoleic acid oxidation and tyrosine nitration in the presence of synthetic neuromelanins.

نویسندگان

  • K Stepień
  • A Wilczok
  • A Zajdel
  • A Dzierzega-Lecznar
  • T Wilczok
چکیده

Peroxynitrite-mediated linoleic acid oxidation and tyrosine nitration were analysed in the presence of synthetic model neuromelanins: dopamine (DA) -melanin, cysteinyldopamine (CysDA) -melanin and various DA/CysDA copolymers. The presence of melanin significantly decreased the amount of 3-nitrotyrosine formed. This inhibitory effect depended on the type and concentration of melanin polymer. It was found that incorporation of CysDA-derived units into melanin attenuated its protective effect on tyrosine nitration induced by peroxynitrite. In the presence of bicarbonate, the melanins also inhibited 3-nitrotyrosine formation in a concentration dependent manner, although the extent of inhibition was lower than in the absence of bicarbonate. The tested melanins inhibited peroxynitrite-induced formation of linoleic acid hydroperoxides, both in the absence and in the presence of bicarbonate. In the presence of bicarbonate, among the oxidation products appeared 4-hydroxynonenal (HNE). CysDA-melanin inhibited the formation of HNE, while DA-melanin did not affect the aldehyde level. The results of the presented study suggest that neuromelanin can act as a natural scavenger of peroxynitrite.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scavengers for peroxynitrite: inhibition of tyrosine nitration and oxidation with tryptamine derivatives, alpha-lipoic acid and synthetic compounds.

The inhibitory effects of various endogenous and synthetic compounds on the nitration and oxidation of L-tyrosine by peroxynitrite were examined. Nitrating and oxidizing activities were monitored by the formation of 3-nitrotyrosine and dityrosine with a HPLC-UV-fluorescence detector system, respectively. Glutathione, serotonin and synthetic sulfur- and selenium-containing compounds inhibited bo...

متن کامل

Protein Tyrosine Nitration and Thiol Oxidation by Peroxynitrite—Strategies to Prevent These Oxidative Modifications

The reaction product of nitric oxide and superoxide, peroxynitrite, is a potent biological oxidant. The most important oxidative protein modifications described for peroxynitrite are cysteine-thiol oxidation and tyrosine nitration. We have previously demonstrated that intrinsic heme-thiolate (P450)-dependent enzymatic catalysis increases the nitration of tyrosine 430 in prostacyclin synthase an...

متن کامل

Peroxynitrite-mediated modification of proteins at physiological carbon dioxide concentration: pH dependence of carbonyl formation, tyrosine nitration, and methionine oxidation.

The ability of peroxynitrite to modify amino acid residues in glutamine synthetase (GS) and BSA is greatly influenced by pH and CO2. At physiological concentrations of CO2 (1.3 mM), the generation of carbonyl groups (0.2-0.4 equivalents/subunit) is little affected by pH over the range of 7.2-9.0, but, in the absence of CO2, carbonyl formation increases (from 0.1- 1.2 equivalents/subunit) as the...

متن کامل

Oxidation of ubiquinol by peroxynitrite: implications for protection of mitochondria against nitrosative damage.

A major pathway of nitric oxide utilization in mitochondria is its conversion to peroxynitrite, a species involved in biomolecule damage via oxidation, hydroxylation and nitration reactions. In the present study the potential role of mitochondrial ubiquinol in protecting against peroxynitrite-mediated damage is examined and the requirements of the mitochondrial redox status that support this fu...

متن کامل

Low serum ferroxidase I activity is associated with mortality in heart failure and related to both peroxynitrite-induced cysteine oxidation and tyrosine nitration of ceruloplasmin.

RATIONALE Ceruloplasmin antioxidant function is mainly related to its ferroxidase I (FeOxI) activity, which influences iron-dependent oxidative and nitrosative radical species generation. Peroxynitrite, whose production is increased in heart failure (HF), can affect ceruloplasmin antioxidant function through amino acid modification. OBJECTIVE We investigated the relationship between FeOxI and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Acta biochimica Polonica

دوره 47 4  شماره 

صفحات  -

تاریخ انتشار 2000